Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e14832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36883058

RESUMO

Quinoa (Chenopodium quinoa) is a grain-like, genetically diverse, highly complex, nutritious, and stress-tolerant food that has been used in Andean Indigenous cultures for thousands of years. Over the past several decades, numerous nutraceutical and food companies are using quinoa because of its perceived health benefits. Seeds of quinoa have a superb balance of proteins, lipids, carbohydrates, saponins, vitamins, phenolics, minerals, phytoecdysteroids, glycine betaine, and betalains. Quinoa due to its high nutritional protein contents, minerals, secondary metabolites and lack of gluten, is used as the main food source worldwide. In upcoming years, the frequency of extreme events and climatic variations is projected to increase which will have an impact on reliable and safe production of food. Quinoa due to its high nutritional quality and adaptability has been suggested as a good candidate to offer increased food security in a world with increased climatic variations. Quinoa possesses an exceptional ability to grow and adapt in varied and contrasting environments, including drought, saline soil, cold, heat UV-B radiation, and heavy metals. Adaptations in salinity and drought are the most commonly studied stresses in quinoa and their genetic diversity associated with two stresses has been extensively elucidated. Because of the traditional wide-ranging cultivation area of quinoa, different quinoa cultivars are available that are specifically adapted for specific stress and with broad genetic variability. This review will give a brief overview of the various physiological, morphological and metabolic adaptations in response to several abiotic stresses.


Assuntos
Chenopodium quinoa , Adaptação Psicológica , Vitaminas , Aclimatação , Betaína
2.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838704

RESUMO

Elicitors are stressors that activate secondary pathways that lead to the increased production of bioactive molecules in plants. Different elicitors including the fungus Aspergillus niger (0.2 g/L), methyl jasmonate (MeJA, 100 µM/L), and silver nanoparticles (1 µg/L) were added, individually and in combination, in a hydroponic medium. The application of these elicitors in hydroponic culture significantly increased the concentration of photosynthetic pigments and total phenolic contents. The treatment with MeJA (methyl jasmonate) (100 µM/L) and the co-treatment of MeJA and AgNPs (silver nanoparticles) (100 µM/L + 1 µg/L) exhibited the highest chlorophyll a (29 µg g-1 FW) and chlorophyll b (33.6 µg g-1 FW) contents, respectively. The elicitor MeJA (100 µM/L) gave a substantial rise in chlorophyll a and b and total chlorophyll contents. Likewise, a significant rise in carotenoid contents (9 µg/g FW) was also observed when subjected to meJA (100 µM/L). For the phenolic content, the treatment with meJA (100 µM/L) proved to be very effective. Nevertheless, the highest production (431 µg/g FW) was observed when treated with AgNPs (1 µg/L). The treatments with various elicitors in this study had a significant effect on flavonoid and lignin content. The highest concentration of flavonoids and lignin was observed when MeJA (100 mM) was used as an elicitor, following a 72-h treatment period. Hence, for different plant metabolites, the treatment with meJA (100 µM/L) and a co-treatment of MeJA and AgNPs (100 µM/L + 1 µg/L) under prolonged exposure times of 120-144 h proved to be the most promising in the accretion of valuable bioactive molecules. The study opens new insights into the use of these elicitors, individually or in combination, by using different concentrations and compositions.


Assuntos
Nanopartículas Metálicas , Silybum marianum , Silybum marianum/metabolismo , Clorofila A/metabolismo , Lignina/metabolismo , Prata/metabolismo , Hidroponia , Flavonoides/química , Acetatos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fenóis/metabolismo
3.
Curr Cardiol Rev ; 19(1): e280422204209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35657286

RESUMO

The acute coronary syndrome is one of the commonest life-threatening illnesses. It encompasses the clinical spectrum of acute myocardial ischemia and includes unstable angina and acute myocardial infarction both with and without ST segment elevation. The acute coronary syndrome can be attributed to a significant hemodynamic insult that leads to atherosclerosis of the epicardial coronary arteries. The main causative risk factors, such as obesity, smoking, and alcohol intake, increase the burden of acute coronary syndrome. Owing to an increase in the utilization of antioxidants, the antioxidant capacity decreases concerning the scavenging of lipid peroxides. Moreover, the thyroid hormones are important regulators of the expression of cardiac genes, and many of the cardiac manifestations of thyroid dysfunction are associated with alterations in triiodothyronine- mediated gene expression. Cardiovascular signs and symptoms of thyroid disease are among the most acute clinically relevant findings that occur in combination with both hypothyroidism and hyperthyroidism. By understanding the cellular mechanism of the action of thyroid hormones on the heart and cardiovascular system, it is possible to explain rhythm disturbances and alterations in cardiac output, blood pressure, cardiac contractility, and vascular resistance that result from thyroid dysfunction. Oxidative stress is thereby induced, together with a decrease in antioxidant capacity for overcoming oxidative stress, which leads to endothelial dysfunction, subsequent atherosclerosis, and, ultimately, acute myocardial infarction. The implications for the identification of the effects of thyroid disease on acute myocardial infarction include the observation that restoration of normal thyroid function repeatedly reverses abnormalities in cardiovascular hemodynamics.


Assuntos
Síndrome Coronariana Aguda , Aterosclerose , Infarto do Miocárdio , Doenças da Glândula Tireoide , Humanos , Antioxidantes , Hormônios Tireóideos/metabolismo
4.
Metabolites ; 12(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36557312

RESUMO

Hyperglycemia is seen in approximately 68 percent of patients admitted to a medical intensive care unit (ICU). In many acute circumstances, such as myocardial infarction, brain, injury and stroke, it is an independent predictor of mortality. Hyperglycemia is induced by a mix of genetic, environmental, and immunologic variables in people with type 1 diabetes. These factors cause pancreatic beta cell death and insulin insufficiency. Insulin resistance and irregular insulin production cause hyperglycemia in type 2 diabetes patients. Hyperglycemia activates a number of complicated interconnected metabolic processes. Hyperglycemia is a major contributor to the onset and progression of diabetes' secondary complications such as neuropathy, nephropathy, retinopathy, cataracts, periodontitis, and bone and joint issues. Studies on the health benefits of ginger and its constituent's impact on hyperglycemia and related disorders have been conducted and gingerol proved to be a potential pharmaceutically active constituent of ginger (Zingiber officinale) that has been shown to lower blood sugar levels, because it possesses antioxidant properties and it functions as an antioxidant in the complicated biochemical process that causes hyperglycemia to be activated. Gingerol not only helps in treating hyperglycemia but also shows effectivity against diseases related to it, such as cardiopathy, kidney failure, vision impairments, bone and joint problems, and teeth and gum infections. Moreover, fresh ginger has various gingerol analogues, with 6-gingerol being the most abundant. However, it is necessary to investigate the efficacy of its other analogues against hyperglycemia and associated disorders at various concentrations in order to determine the appropriate dose for treating these conditions.

5.
Nanomaterials (Basel) ; 12(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558344

RESUMO

Current research into the role of engineered nanoparticles in drug delivery systems (DDSs) for medical purposes has developed numerous fascinating nanocarriers. This paper reviews the various conventionally used and current used carriage system to deliver drugs. Due to numerous drawbacks of conventional DDSs, nanocarriers have gained immense interest. Nanocarriers like polymeric nanoparticles, mesoporous nanoparticles, nanomaterials, carbon nanotubes, dendrimers, liposomes, metallic nanoparticles, nanomedicine, and engineered nanomaterials are used as carriage systems for targeted delivery at specific sites of affected areas in the body. Nanomedicine has rapidly grown to treat certain diseases like brain cancer, lung cancer, breast cancer, cardiovascular diseases, and many others. These nanomedicines can improve drug bioavailability and drug absorption time, reduce release time, eliminate drug aggregation, and enhance drug solubility in the blood. Nanomedicine has introduced a new era for drug carriage by refining the therapeutic directories of the energetic pharmaceutical elements engineered within nanoparticles. In this context, the vital information on engineered nanoparticles was reviewed and conferred towards the role in drug carriage systems to treat many ailments. All these nanocarriers were tested in vitro and in vivo. In the coming years, nanomedicines can improve human health more effectively by adding more advanced techniques into the drug delivery system.

6.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293326

RESUMO

The mammalian target of rapamycin (mTOR) is the major controller of a number of important cellular activities, including protein synthesis, cell expansion, multiplication, autophagy, lysosomal function, and cellular metabolism. When mTOR interacts with specific adaptor proteins, it forms two complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). The mTOR signaling system regulates gene transcription and protein manufacturing to control proliferation of cell, differentiation of immune cell, and tumor metabolism. Due to its vital role in case of microbial infections, inflammations and cancer development and progression, mTOR has been considered as a key therapeutic target for the development of targeted medication. As autophagy dysfunction is linked to changes in both innate and adaptive immune responses, bacterial clearance defects, and goblet and Paneth cell malfunction, all of these changes are linked to inflammatory bowel diseases (IBD) and colorectal cancer (CRC) pathogenesis. Preclinical and clinical data have shown that the inhibition and induction of autophagy have significant potential to be translated into the clinical applications. In IBD and several CRC models, mTORC1 inhibitors have been found effective. In the recent years, a number of novel mTOR inhibitors have been investigated in clinical trials, and a number of drugs have shown considerably enhanced efficacy when combined with mTOR inhibitors. The future developments in the mTOR targeting medications can benefit patients in individualized therapy. Advanced and innovative medicines that are more effective and have lower drug resistance are still in high demand. New findings could be relevant in medicine development, pharmacological modification, or future mTOR inhibitor research. Therefore, the goal of this review is to present a comprehensive account of current developments on the mTOR pathway and its inhibitors, with an emphasis on the management of microbial infections, the treatment of inflammatory bowel disease, and the management of colon cancer.


Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Humanos , Inibidores de MTOR , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Neoplasias Colorretais/patologia
7.
Front Plant Sci ; 13: 897795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035667

RESUMO

Medicinal plants have been used to cure human diseases since decades. Silybum marianum, a medicinal plant, is regarded as a source of secondary metabolites with therapeutic value against liver diseases and diabetes. The present study was conducted to enrich the production of secondary metabolites in the vegetative parts of Silybum marianum using elicitation strategy in hydroponic system with different elicitors. The elicitors of fungus Aspergillus niger (0.2 g/L), methyl jasmonate (MeJA) (100 µM) and silver nanoparticles (AgNPs) (1 ppm) were added in hydroponic medium, individually and in combination form to the 15 days old plant. The elicitor-treated plants were harvested at different time points (24-144 h; increment 24 h) and their biochemical parameters like phenolics, flavonoids, nitric oxide (NO), and superoxide dismutase (SOD) were analyzed. The results showed hyper-accumulation of these biochemical contents, especially in response to MeJA (100 µM), followed by AgNPs (1 ppm) and co-treatment of AgNPs (1 ppm) with other elicitors. The results revealed that the treatment with MeJA (100 µM) exhibited the highest flavonoid (304 µg g-1), phenolic (372 µg g-1), and SOD (16.2 U g-1) contents. For NO levels, the maximum value of 198.6 nmole g-1 was achieved in response to the treatment with MeJA + Green synthesized AgNPs (100 µM + 1 ppm). Our findings depicted an enhanced production of medicinally important plant secondary metabolites and antioxidants; hence, the method applied in this study can play a significant role to improve therapeutic values of the plants.

9.
Front Plant Sci ; 13: 881032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615133

RESUMO

Plants often face incompatible growing environments like drought, salinity, cold, frost, and elevated temperatures that affect plant growth and development leading to low yield and, in worse circumstances, plant death. The arsenal of versatile compounds for plant consumption and structure is called metabolites, which allows them to develop strategies to stop enemies, fight pathogens, replace their competitors and go beyond environmental restraints. These elements are formed under particular abiotic stresses like flooding, heat, drought, cold, etc., and biotic stress such as a pathogenic attack, thus associated with survival strategy of plants. Stress responses of plants are vigorous and include multifaceted crosstalk between different levels of regulation, including regulation of metabolism and expression of genes for morphological and physiological adaptation. To date, many of these compounds and their biosynthetic pathways have been found in the plant kingdom. Metabolites like amino acids, phenolics, hormones, polyamines, compatible solutes, antioxidants, pathogen related proteins (PR proteins), etc. are crucial for growth, stress tolerance, and plant defense. This review focuses on promising metabolites involved in stress tolerance under severe conditions and events signaling the mediation of stress-induced metabolic changes are presented.

10.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268709

RESUMO

Multiple sclerosis is a chronic autoimmune disorder that leads to the demyelination of nerve fibers, which is the major cause of non-traumatic disability all around the world. Herbal plants Nepeta hindustana L., Vitex negundo L., and Argemone albiflora L., in addition to anti-inflammatory and anti-oxidative effects, have shown great potential as neuroprotective agents. The study was aimed to develop a neuroprotective model to study the effectiveness of herbal plants (N. hindustana, V. negundo, and A. albiflora) against multiple sclerosis. The in vivo neuroprotective effects of ethanolic extracts isolated from N. hindustana, V. negundo, and A. albiflora were evaluated in lipopolysaccharides (LPS) induced multiple sclerosis Wistar rat model. The rat models were categorized into seven groups including group A as normal, B as LPS induced diseased group, while C, D, E, F, and G were designed as treatment groups. Histopathological evaluation and biochemical markers including stress and inflammatory (MMP-6, MDA, TNF-α, AOPPs, AGEs, NO, IL-17 and IL-2), antioxidant (SOD, GSH, CAT, GPx), DNA damage (Isop-2α, 8OHdG) as well as molecular biomarkers (RAGE, Caspase-8, p38) along with glutamate, homocysteine, acetylcholinesterase, and myelin binding protein (MBP) were investigated. The obtained data were analyzed using SPSS version 21 and GraphPad Prism 8.0. The different extract treated groups (C, D, E, F, G) displayed a substantial neuroprotective effect regarding remyelination of axonal terminals and oligodendrocytes migration, reduced lymphocytic infiltrations, and reduced necrosis of Purkinje cells. The levels of stress, inflammatory, and DNA damage markers were observed high in the diseased group B, which were reduced after treatments with plant extracts. The antioxidant activity was significantly reduced in diseased induced group B, however, their levels were raised after treatment with plant extract. Group F (a mélange of all the extracts) showed the most significant change among all other treatment groups (C, D, E, G). The communal dose of selected plant extracts regulates neurodegeneration at the cellular level resulting in restoration and remyelination of axonal neurons. Moreover, 400 mg/kg dose of three plants in conjugation (Group F) were found to be more effective in restoring the normal activities of all measured parameters than independent doses (Group C, D, E) and is comparable with standard drug nimodipine (Group G) clinically used for the treatment of multiple sclerosis. The present study, for the first time, reported the clinical evidence of N. hindustana, V. negundo, and A. albiflora against multiple sclerosis and concludes that all three plants showed remyelination as well neuroprotective effects which may be used as a potential natural neurotherapeutic agent against multiple sclerosis.


Assuntos
Esclerose Múltipla , Plantas Medicinais , Acetilcolinesterase/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Lipopolissacarídeos/farmacologia , Esclerose Múltipla/tratamento farmacológico , Estresse Oxidativo , Extratos Vegetais/química , Ratos , Ratos Wistar
11.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209086

RESUMO

Engineered nanoparticles that have distinctive targeted characteristics with high potency are modernistic technological innovations. In the modern era of research, nanotechnology has assumed critical importance due to its vast applications in all fields of science. Biologically synthesized nanoparticles using plants are an alternative to conventional methods. In the present study, Citrullus colocynthis (bitter apple) was used for the synthesis of gold nanoparticles (AuNPs). UV-Vis's spectroscopy, XRD, SEM and FTIR were performed to confirm the formation of AuNPs. UV-Vis's spectra showed a characteristic peak at the range of 531.5-541.5 nm. XRD peaks at 2 θ = 38°, 44°, 64° and 77°, corresponding to 111, 200, 220 and 311 planes, confirmed the crystalline nature of AuNPs. Spherical AuNPs ranged mostly between 7 and 33 nm, and were measured using SEM. The FTIR analysis confirmed the presence of phytochemicals on the surface of AuNPs. Successful synthesis of AuNPs by seed extract of Citrullus colocynthis (bitter apple) as a capping and reducing agent represents the novelty of the present study.


Assuntos
Citrullus colocynthis/química , Ouro/química , Química Verde , Nanopartículas Metálicas/química , Compostos Fitoquímicos/química , Fenômenos Químicos , Nanopartículas Metálicas/ultraestrutura , Extratos Vegetais/química , Sementes/química , Análise Espectral
12.
Antioxidants (Basel) ; 11(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35204115

RESUMO

Lycopene is a bioactive red pigment found in plants, especially in red fruits and vegetables, including tomato, pink guava, papaya, pink grapefruit, and watermelon. Several research reports have advocated its positive impact on human health and physiology. For humans, lycopene is an essential substance obtained from dietary sources to fulfil the body requirements. The production of reactive oxygen species (ROS) causing oxidative stress and downstream complications include one of the major health concerns worldwide. In recent years, oxidative stress and its counter strategies have attracted biomedical research in order to manage the emerging health issues. Lycopene has been reported to directly interact with ROS, which can help to prevent chronic diseases, including diabetes and neurodegenerative and cardiovascular diseases. In this context, the present review article was written to provide an accumulative account of protective and ameliorative effects of lycopene on coronary artery disease (CAD) and hypertension, which are the leading causes of death worldwide. Lycopene is a potent antioxidant that fights ROS and, subsequently, complications. It reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous oxide bioavailability. It plays an important role in lowering of LDL (low-density lipoproteins) and improving HDL (high-density lipoproteins) levels to minimize atherosclerosis, which protects the onset of coronary artery disease and hypertension. Various studies have advocated that lycopene exhibited a combating competence in the treatment of these diseases. Owing to all the antioxidant, anti-diabetic, and anti-hypertensive properties, lycopene provides a potential nutraceutical with a protective and curing ability against coronary artery disease and hypertension.

13.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163783

RESUMO

Breast cancer is a diverse disease caused by mutations in multiple genes accompanying epigenetic aberrations of hazardous genes and protein pathways, which distress tumor-suppressor genes and the expression of oncogenes. Alteration in any of the several physiological mechanisms such as cell cycle checkpoints, DNA repair machinery, mitotic checkpoints, and telomere maintenance results in genomic instability. Theranostic has the potential to foretell and estimate therapy response, contributing a valuable opportunity to modify the ongoing treatments and has developed new treatment strategies in a personalized manner. "Omics" technologies play a key role while studying genomic instability in breast cancer, and broadly include various aspects of proteomics, genomics, metabolomics, and tumor grading. Certain computational techniques have been designed to facilitate the early diagnosis of cancer and predict disease-specific therapies, which can produce many effective results. Several diverse tools are used to investigate genomic instability and underlying mechanisms. The current review aimed to explore the genomic landscape, tumor heterogeneity, and possible mechanisms of genomic instability involved in initiating breast cancer. We also discuss the implications of computational biology regarding mutational and pathway analyses, identification of prognostic markers, and the development of strategies for precision medicine. We also review different technologies required for the investigation of genomic instability in breast cancer cells, including recent therapeutic and preventive advances in breast cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Instabilidade Genômica , Neoplasias da Mama/tratamento farmacológico , Biologia Computacional , Epigênese Genética , Feminino , Humanos , Medicina de Precisão
14.
Antibiotics (Basel) ; 10(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943685

RESUMO

The emergence of infectious diseases promises to be one of the leading mortality factors in the healthcare sector. Although several drugs are available on the market, newly found microorganisms carrying multidrug resistance (MDR) against which existing drugs cannot function effectively, giving rise to escalated antibiotic dosage therapies and the need to develop novel drugs, which require time, money, and manpower. Thus, the exploitation of antimicrobials has led to the production of MDR bacteria, and their prevalence and growth are a major concern. Novel approaches to prevent antimicrobial drug resistance are in practice. Nanotechnology-based innovation provides physicians and patients the opportunity to overcome the crisis of drug resistance. Nanoparticles have promising potential in the healthcare sector. Recently, nanoparticles have been designed to address pathogenic microorganisms. A multitude of processes that can vary with various traits, including size, morphology, electrical charge, and surface coatings, allow researchers to develop novel composite antimicrobial substances for use in different applications performing antimicrobial activities. The antimicrobial activity of inorganic and carbon-based nanoparticles can be applied to various research, medical, and industrial uses in the future and offer a solution to the crisis of antimicrobial resistance to traditional approaches. Metal-based nanoparticles have also been extensively studied for many biomedical applications. In addition to reduced size and selectivity for bacteria, metal-based nanoparticles have proven effective against pathogens listed as a priority, according to the World Health Organization (WHO). Moreover, antimicrobial studies of nanoparticles were carried out not only in vitro but in vivo as well in order to investigate their efficacy. In addition, nanomaterials provide numerous opportunities for infection prevention, diagnosis, treatment, and biofilm control. This study emphasizes the antimicrobial effects of nanoparticles and contrasts nanoparticles' with antibiotics' role in the fight against pathogenic microorganisms. Future prospects revolve around developing new strategies and products to prevent, control, and treat microbial infections in humans and other animals, including viral infections seen in the current pandemic scenarios.

15.
Polymers (Basel) ; 13(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34960915

RESUMO

The use of biomaterials in the synthesis of nanoparticles is one of the most up-to-date focuses in modern nanotechnologies and nanosciences. More and more research on green methods of producing metal oxide nanoparticles (NP) is taking place, with the goal to overcome the possible dangers of toxic chemicals for a safe and innocuous environment. In this study, we synthesized copper nanoparticles (CuNPs) using Fortunella margarita leaves' extract, which reflects its novelty in the field of nanosciences. The visual observation of a color change from dark green to bluish green clearly shows the instant and spontaneous formation of CuNPs when the phytochemicals of F. margarita come in contact with Cu+2 ions. The synthesis of CuNPs was carried out at different conditions, including pH, temperature, concentration ratio and time, and were characterized with UV-Vis absorption spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The UV-Vis analysis reveals the surface plasmon resonance property (SPR) of CuNPs, showing a characteristic absorption peak at 679 nm, while SEM reveals the spherical but agglomerated shape of CuNPs of the size within the range of 51.26-56.66 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...